Change variable precision used
collapse all in page
Syntax
digits(d)
d1 = digits
d1 = digits(d)
Description
example
digits(d)
sets theprecision used by vpa to d
significantdecimal digits. The default is 32 digits.
example
d1 = digits
returnsthe current precision used by vpa
.
example
d1 = digits(d)
setsthe new precision d
and returns the old precisionin d1
.
Examples
Increase Precision of Results
By default, MATLAB® uses 16 digits of precision.For higher precision, use vpa.The default precision for vpa
is 32 digits. Increaseprecision beyond 32 digits by using digits
.
Find pi
using vpa
, whichuses the default 32 digits of precision. Confirm that the currentprecision is 32 by using digits
.
pi32 = vpa(pi)
pi32 =3.1415926535897932384626433832795
currentPrecision = digits
currentPrecision = 32
Save the current value of digits
in digitsOld
andset the new precision to 100
digits. Find pi
using vpa
.The result has 100 digits.
digitsOld = digits(100);pi100 = vpa(pi)
pi100 =3.1415926535897932384626433832795028841971693993751058209...74944592307816406286208998628034825342117068
Note
vpa
output is symbolic. To use symbolicoutput with a MATLAB function that does not accept symbolic values,convert symbolic values to double precision by using double.
Lastly, restore the old value of digits
forfurther calculations.
digits(digitsOld)
For more information, see Increase Precision of Numeric Calculations.
Increase Speed by Decreasing Precision
Increase the speed of MATLAB calculationsby using vpa
with a lower precision. Set thelower precision by using digits
.
First, find the time taken to perform an operation on a largeinput.
input = 1:0.01:500;ticzeta(input);toc
Elapsed time is 48.968983 seconds.
Now, repeat the operation with a lower precision by using vpa
.Lower the precision to 10
digits by using digits
.Then, use vpa
to reduce the precision of input
andperform the same operation. The time taken decreases significantly.
digitsOld = digits(10);vpaInput = vpa(input);ticzeta(vpaInput);toc
Elapsed time is 31.450342 seconds.
Note
vpa
output is symbolic. To use symbolicoutput with a MATLAB function that does not accept symbolic values,convert symbolic values to double precision by using double.
Lastly, restore the old value of digits
forfurther calculations.
digits(digitsOld)
For more information, see Increase Speed by Reducing Precision.
Guard Digits
The number of digits that you specify using the vpa
functionor the digits
function is the guaranteed numberof digits. Internally, the toolbox can use a few more digits thanyou specify. These additional digits are called guard digits.For example, set the number of digits to 4, and then display the floating-pointapproximation of 1/3 using four digits:
old = digits(4);a = vpa(1/3)
a =0.3333
Now, display a
using 20 digits. The resultshows that the toolbox internally used more than four digits whencomputing a
. The last digits in the following resultare incorrect because of the round-off error:
digits(20)vpa(a)digits(old)
ans =0.33333333333303016843
Hidden Round-Off Errors
Hidden round-off errors can cause unexpected results. For example,compute the number 1/10 with the default 32-digit accuracy and with10-digit accuracy:
a = vpa(1/10)old = digits(10);b = vpa(1/10)digits(old)
a =0.1 b =0.1
Now, compute the difference a - b
. The resultis not 0:
a - b
ans =0.000000000000000000086736173798840354720600815844403
The difference a - b
is not equal to zerobecause the toolbox internally boosts the 10-digit number b= 0.1
to 32-digit accuracy. This process implies round-offerrors. The toolbox actually computes the difference a -b
as follows:
b = vpa(b)a - b
b =0.09999999999999999991326382620116 ans =0.000000000000000000086736173798840354720600815844403
Techniques Used to Convert Floating-Point Numbers to Symbolic Objects
Suppose you convert a double number to a symbolic object, andthen perform VPA operations on that object. The results can dependon the conversion technique that you used to convert a floating-pointnumber to a symbolic object. The sym
function letsyou choose the conversion technique by specifying the optional secondargument, which can be 'r'
, 'f'
, 'd'
,or 'e'
. The default is 'r'
.For example, convert the constant π=3.141592653589793... toa symbolic object:
r = sym(pi)f = sym(pi,'f')d = sym(pi,'d')e = sym(pi,'e')
r =pi f =884279719003555/281474976710656 d =3.1415926535897931159979634685442 e =pi - (198*eps)/359
Although the toolbox displays these numbers differently on thescreen, they are rational approximations of pi
.Use vpa
to convert these rational approximationsof pi
back to floating-point values.
Set the number of digits to 4. Three of the four approximationsgive the same result.
digits(4)vpa(r)vpa(f)vpa(d)vpa(e)
ans =3.142 ans =3.142 ans =3.142 ans =3.142 - 0.5515*eps
Now, set the number of digits to 40. The differences betweenthe symbolic approximations of pi
become more visible.
digits(40)vpa(r)vpa(f)vpa(d)vpa(e)
ans =3.141592653589793238462643383279502884197 ans =3.141592653589793115997963468544185161591 ans =3.1415926535897931159979634685442 ans =3.141592653589793238462643383279502884197 -...0.5515320334261838440111420612813370473538*eps
Input Arguments
collapse all
d
— New accuracy setting
number | symbolic number
New accuracy setting, specified as a number or symbolic number.The setting specifies the number of significant decimal digits tobe used for variable-precision calculations. If the value d
isnot an integer, digits
rounds it to the nearestinteger.
Output Arguments
collapse all
d1
— Current accuracy setting
double-precision number
Current accuracy setting, returned as a double-precision number.The setting specifies the number of significant decimal digits currentlyused for variable-precision calculations.
Version History
Introduced before R2006a
See Also
double | vpa
Topics
- Increase Precision of Numeric Calculations
- Recognize and Avoid Round-Off Errors
- Increase Speed by Reducing Precision
- Change Output Format of Symbolic and Variable-Precision Arithmetic