Variable-precision arithmetic (arbitrary-precision arithmetic) - MATLAB vpa (2024)

Variable-precision arithmetic (arbitrary-precision arithmetic)

collapse all in page

Syntax

xVpa = vpa(x)

xVpa = vpa(x,d)

Description

example

xVpa = vpa(x) uses variable-precision arithmetic (arbitrary-precision floating-point numbers) to evaluate each element of the symbolic input x to at least d significant digits, where d is the value of the digits function. The default value of digits is 32.

example

xVpa = vpa(x,d) uses at least d significant digits instead of the value of digits.

Examples

collapse all

Evaluate Symbolic Inputs with Variable-Precision Arithmetic

Open Live Script

Evaluate symbolic inputs with variable-precision floating-point arithmetic. By default, vpa calculates values to 32 significant digits.

p = sym(pi);pVpa = vpa(p)
pVpa =3.1415926535897932384626433832795
syms xa = sym(1/3);f = a*sin(2*p*x);fVpa = vpa(f)
fVpa =0.33333333333333333333333333333333sin(6.283185307179586476925286766559x)

Evaluate elements of vectors or matrices with variable-precision arithmetic.

V = [x/p a^3];VVpa = vpa(V)
VVpa =(0.31830988618379067153776752674503x0.037037037037037037037037037037037)
M = [sin(p) cos(p/5); exp(p*x) x/log(p)];MVpa = vpa(M)
MVpa =

(00.80901699437494742410229341718282e3.1415926535897932384626433832795x0.87356852683023186835397746476334x)

Change Precision Used by vpa

Open Live Script

By default, vpa evaluates inputs to 32 significant digits. You can change the number of significant digits by using the digits function.

Approximate the expression 100001/10001 with seven significant digits using digits. Save the old value of digits returned by digits(7). The vpa function returns only five significant digits, which can mean the remaining digits are zeros.

digitsOld = digits(7);y = sym(100001)/10001;yVpa = vpa(y)
yVpa =9.9991

Check if the remaining digits are zeros by using a higher precision value of 25. The result shows that the remaining digits are in fact zeros that are part of a repeating decimal.

digits(25)yVpa = vpa(y)
yVpa =9.999100089991000899910009

Alternatively, to override digits for a single vpa call, change the precision by specifying the second argument.

Find π to 100 significant digits by specifying the second argument.

pVpa =3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117068

Restore the original precision value in digitsOld for further calculations.

digits(digitsOld)

Numerically Approximate Symbolic Results

Open Live Script

While symbolic results are exact, they might not be in a convenient form. You can use vpa to numerically approximate exact symbolic results.

Solve a high-degree polynomial for its roots using solve. The solve function cannot symbolically solve the high-degree polynomial and represents the roots using root.

syms xy = solve(x^4 - x + 1, x)
y =

(root(z4-z+1,z,1)root(z4-z+1,z,2)root(z4-z+1,z,3)root(z4-z+1,z,4))

Use vpa to numerically approximate the roots.

yVpa = vpa(y)
yVpa =

(0.72713608449119683997667565867496-0.43001428832971577641651985839602i0.72713608449119683997667565867496+0.43001428832971577641651985839602i-0.72713608449119683997667565867496-0.93409928946052943963903028710582i-0.72713608449119683997667565867496+0.93409928946052943963903028710582i)

vpa Uses Guard Digits to Maintain Precision

Open Live Script

The value of the digits function specifies the minimum number of significant digits used. Internally, vpa can use more digits than digits specifies. These additional digits are called guard digits because they guard against round-off errors in subsequent calculations.

Numerically approximate 1/3 using four significant digits.

a = vpa(1/3,4)
a =0.3333

Approximate the result a using 20 digits. The result shows that the toolbox internally used more than four digits when computing a. The last digits in the result are incorrect because of the round-off error.

aVpa = vpa(a,20)
aVpa =0.33333333333303016843

Avoid Hidden Round-Off Errors

Open Live Script

Hidden round-off errors can cause unexpected results.

Evaluate 1/10 with the default 32-digit precision and then with the 10-digit precision.

a = vpa(1/10,32)
a =0.1
b = vpa(1/10,10)
b =0.1

Superficially, a and b look equal. Check their equality by finding a - b.

roundoff = a - b
roundoff =0.000000000000000000086736173798840354720600815844403

The difference is not equal to zero because b was calculated with only 10 digits of precision and contains a larger round-off error than a. When you find a - b, vpa approximates b with 32 digits. Demonstrate this behavior.

roundoff = a - vpa(b,32)
roundoff =0.000000000000000000086736173798840354720600815844403

vpa Restores Precision of Common Double-Precision Inputs

Open Live Script

Unlike exact symbolic values, double-precision values inherently contain round-off errors. When you call vpa on a double-precision input, vpa cannot restore the lost precision, even though it returns more digits than the double-precision value. However, vpa can recognize and restore the precision of expressions of the form pq, pπq, (pq)12, 2q, and 10q, where p and q are modest-sized integers.

First, demonstrate that vpa cannot restore precision for a double-precision input. Call vpa on a double-precision result and the same symbolic result.

dp = log(3);s = log(sym(3));dpVpa = vpa(dp)
dpVpa =1.0986122886681095600636126619065
sVpa = vpa(s)
sVpa =1.0986122886681096913952452369225
d = sVpa - dpVpa
d =0.00000000000000013133163257501600766255995767652

As expected, the double-precision result differs from the exact result at the 16th decimal place.

Demonstrate that vpa restores precision for expressions of the form pq, pπq, (pq)12, 2q, and 10q, where p and q are modest-sized integers, by finding the difference between the vpa call on the double-precision result and on the exact symbolic result. The differences are 0.0 showing that vpa restores lost precision for the double-precision input.

d = vpa(1/3) - vpa(1/sym(3))
d =0.0
d = vpa(pi) - vpa(sym(pi))
d =0.0
d = vpa(1/sqrt(2)) - vpa(1/sqrt(sym(2)))
d =0.0
d = vpa(2^66) - vpa(2^sym(66))
d =0.0
d = vpa(10^25) - vpa(10^sym(25))
d =0.0

Evaluate Symbolic Matrix Variable with Variable-Precision Arithmetic

Since R2022b

Open Live Script

Create a symbolic expression S that represents sin([ππ2π2π3]X), where X is a 2-by-1 symbolic matrix variable.

syms X [2 1] matrixS = sin(hilb(2)*pi*X)
S =

sin(Σ1X)whereΣ1=(ππ2π2π3)

Evaluate the expression with variable-precision arithmetic.

SVpa = vpa(S)
SVpa =

(sin(3.1415926535897932384626433832795X1+1.5707963267948966192313216916398X2)sin(1.5707963267948966192313216916398X1+1.0471975511965977461542144610932X2))

Input Arguments

collapse all

xInput to evaluate
number | vector | matrix | multidimensional array | symbolic number | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic expression | symbolic function | symbolic character vector | symbolic matrix variable

Input to evaluate, specified as a number, vector, matrix, multidimensional array, or a symbolic number, vector, matrix, multidimensional array, expression, function, character vector, or matrix variable.

dNumber of significant digits
positive integer scalar

Number of significant digits, specified as a positive integer scalar. d must be greater than 1 and less than 229+1.

Output Arguments

collapse all

xVpa — Variable-precision output
symbolic number | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic expression | symbolic function

Variable-precision output, returned as a symbolic number, vector, matrix, multidimensional array, expression, or function.

  • For almost all input data types (such as sym, symmatrix, double, single, int64, and so on), vpa returns the output as data type sym.

  • If the input is a symbolic function of type symfun, then vpa returns the output as data type symfun. For example, syms f(x); f(x) = pi*x; g = vpa(f) returns the output g as type symfun.

  • If the input is an evaluated symbolic function of type sym, such as g = vpa(f(x)), then vpa returns the output as data type sym.

Tips

  • vpa does not convert fractionsin the exponent to floating point. For example, vpa(a^sym(2/5)) returns a^(2/5).

  • vpa uses more digits than thenumber of digits specified by digits. These extradigits guard against round-off errors in subsequent calculations andare called guard digits.

  • When you call vpa on a numericinput, such as 1/3, 2^(-5),or sin(pi/4), the numeric expression is evaluatedto a double-precision number that contains round-off errors. Then, vpa iscalled on that double-precision number. For accurate results, convertnumeric expressions to symbolic expressions with sym.For example, to approximate exp(1), use vpa(exp(sym(1))).

  • If the second argument d is notan integer, vpa rounds it to the nearest integerwith round.

  • vpa restores precision for numericinputs that match the forms p/q, pπ/q, (p/q)1/2, 2q,and 10q,where p and q are modest-sizedintegers.

  • Variable-precision arithmetic is different from IEEE® Floating-Point Standard 754 in these ways:

    • Inside computations, division by zero throws an error.

    • The exponent range is larger than in any predefined IEEE mode. vpa underflows below approximately 10^(-323228496).

    • Denormalized numbers are not implemented.

    • Zeros are not signed.

    • The number of binary digits in the mantissa of a result may differ between variable-precision arithmetic and IEEE predefined types.

    • There is only one NaN representation. No distinction is made between quiet and signaling NaN.

    • No floating-point number exceptions are available.

Version History

Introduced before R2006a

expand all

You can evaluate a symbolic matrix variable of type symmatrix with variable-precision arithmetic. The result is a symbolic expression with variable-precision numbers and scalar variables of type sym. For an example, see Evaluate Symbolic Matrix Variable with Variable-Precision Arithmetic.

Support for character vectors that do not define a number has been removed. Instead, first create symbolic numbers and variables using sym and syms, and then use operations on them. For example, use vpa((1 + sqrt(sym(5)))/2) instead of vpa('(1 + sqrt(5))/2').

See Also

digits | double | root | vpaintegral

Topics

  • Increase Precision of Numeric Calculations
  • Recognize and Avoid Round-Off Errors
  • Increase Speed by Reducing Precision
  • Choose Numeric or Symbolic Arithmetic
  • Change Output Format of Symbolic and Variable-Precision Arithmetic

MATLAB Command

You clicked a link that corresponds to this MATLAB command:

 

Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.

Variable-precision arithmetic (arbitrary-precision arithmetic) - MATLAB vpa (1)

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

You can also select a web site from the following list:

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
  • 日本 (日本語)
  • 한국 (한국어)

Contact your local office

Variable-precision arithmetic (arbitrary-precision arithmetic) - MATLAB vpa (2024)

References

Top Articles
Borderlands games ranked, worst to best
The Best Esports Games for 2024
Gilbert Public Schools Infinite Campus
Https //Paperlesspay.talx.com/Gpi
Grand Rental Station Vinton Va
Shining Time Station (television series)
Equipment Hypixel Skyblock
Uscis Fort Myers 3850 Colonial Blvd
24 Hour Lock Up Knoxville Tn
What Is a Food Bowl and Why Are They So Popular?
Join MileSplit to get access to the latest news, films, and events!
Meet Scores Online 2022
Machiavelli ‑ The Prince, Quotes & The Art of War
Violent Night Showtimes Near The Grand 16 - Lafayette
Gncc Live Timing And Scoring
Craigslist Org Hattiesburg Ms
Ratchet & Clank Rift Apart: Trofea - lista | GRYOnline.pl
O'reilly Auto Parts Near Me Open Now
Elmira Star Gazette Obit
Bbc Weather Boca Raton
rochester, NY cars & trucks - craigslist
Dr Seuss Star Bellied Sneetches Pdf
Wsbtv Traffic Map
Gulfport Senior Center Calendar
New Orleans Magazine | Dining, Entertainment, Homes, Lifestyle and all things NOLA
David Goggins Is A Fraud
FirstLight Power to Acquire Leading Canadian Renewable Operator and Developer Hydromega Services Inc. - FirstLight
Osrs Toby
Management Trainee: Associate Adjuster - June 2025
10 Top-Rated Tourist Attractions in Negril
Stephanie Ruhle's Husband
Erfahrungen mit Rheumaklinik Bad Aibling, Reha-Klinik, Bayern
Dimbleby Funeral Home
Plastic Bench Walmart
JetBlue, Spirit end $3.8 billion merger agreement after losing antitrust suit
Seats 3D Ubs Arena
Brgeneral Patient Portal
Studentvue Paramount
General Kearny Inn Motel & Event Center
TWENTY/20 TAPHOUSE, Somerset - Menu, Prices & Restaurant Reviews - Order Online Food Delivery - Tripadvisor
Sam's Club Gas Price Hilliard
Lipidene Reviews 2021
Delta Incoming Flights Msp
Naviance Hpisd
Obituaries - The Boston Globe
Richard Sambade Obituary
Lowlifesymptoms Twitter
Poopybarbz
18K Gersc Stamped Inside Ring
'Selling Sunset' star Alanna Gold said she owned a California desert town. Now, she says she doesn't.
Nfl Spotrac Transactions
Sammyflood
Latest Posts
Article information

Author: Sen. Emmett Berge

Last Updated:

Views: 5908

Rating: 5 / 5 (60 voted)

Reviews: 91% of readers found this page helpful

Author information

Name: Sen. Emmett Berge

Birthday: 1993-06-17

Address: 787 Elvis Divide, Port Brice, OH 24507-6802

Phone: +9779049645255

Job: Senior Healthcare Specialist

Hobby: Cycling, Model building, Kitesurfing, Origami, Lapidary, Dance, Basketball

Introduction: My name is Sen. Emmett Berge, I am a funny, vast, charming, courageous, enthusiastic, jolly, famous person who loves writing and wants to share my knowledge and understanding with you.